.
Gracias al ahínco de Antonio Bravo que ha conseguido la versión rusa, nunca antes traducida al castellano, a la paciencia de Natalia Abramenko que lo ha traducido, tratando de expresar en castellano, la sensibilidad que el autor le ha dado originalmente en ruso, a Patricio Barros que ha “traducido” lo ya traducido por Natalia, para darle sentido en el lenguaje de la geometría y a Guillermo Mejía que ha corregido, con infinita paciencia, el texto completo, hemos logrado poner a disposición de los internautas, un libro que constituye una exclusividad en la lengua castellana; nos referimos a la Geometría Recreativa escrita por Yakov Perelman. Ante Uds. uno de los mejores clásicos de la geometría práctica. Su lenguaje sencillo y directo facilita la lectura del libro: problemas poco comunes, captura de situaciones históricas y curiosos ejemplos de la vida diaria, harán las delicias de los jóvenes lectores y talvez de otros no tanto. Esta publicación tiene como objetivo principal inculcar en los jóvenes el gusto por el estudio de la geometría, promoviendo en ellos el interés por su aprendizaje independiente y entregándoles conocimientos suplementarios a los programas escolares. Este libro, una primicia en la lengua castellana, es el resultado de la unión de voluntades que, trabajando en conjunto, han aportado un grano de arena más al conocimiento y difusión de las obras gran autor ruso, Yakov Perelman.
Mayo de 2003
Descarga:
Fuente: matematicapositiva.wordpress.com
Una pequeña muestra:
3. El método de Julio Verne
El siguientemétodo también es sencillo. Julio Verne describió en su novela “La islamisteriosa” la forma de medir los objetos de gran altura:
– Hoyvamos a medir la altura del acantilado de Vista Lejana, –dijo el ingeniero.
–¿Necesitamos algunos instrumentos? –preguntó Gebert.
– Nohace falta. Lo haremos de otra manera, más fácil y más segura.
Eljoven, caminó desde el acantilado hasta la orilla. Cogió un jalón de 12 pies delongitud, el ingeniero comprobó la medida con su estatura, la cual conocíabien. Gebert entregó una plomada al ingeniero; ésta no era más que una piedraatada al extremo de una cuerda. Situándose a 500 pies del acantilado vertical,el ingeniero clavó el jalón verticalmente en la arena, con la ayuda de laplomada, enterrándola a dos pies de profundidad. Luego se alejó del jalón,hasta que tumbándose en el suelo pudo ver el extremo saliente del jalón y lacresta del acantilado en línea recta (Figura 7). Marcó este punto con unaestaca.
–¿Tienes algunas nociones de geometría?– preguntó a Gebert.
– Sí.
–¿Recuerdas las propiedades de los triángulos semejantes?
– Suslados correspondientes son proporcionales.
–Exacto. Ahora voy a construir dos triángulos rectángulos semejantes. Un catetodel triángulo pequeño será el jalón, el otro cateto, será la distancia desde laestaca hasta el pie del jalón; la hipotenusa, es mi línea de vista. En eltriángulo mayor los catetos son el acantilado, cuya altura queremos medir, y ladistancia desde la estaca hasta el pie del acantilado; la hipotenusa es milínea de vista, que se une con la hipotenusa del triángulo menor.
Figura 7. Como encontraron la altura de un acantilado los personajes de Julio Verne
– ¡Eeentendido! – exclamó el joven. La distancia de la estaca hasta el jalón es a la distancia desde la estaca hasta el pie del acantilado, como la altura del jalón es a la altura del acantilado.
–Exactamente. Sigamos, si medimos las dos primeras distancias, y sabemos laaltura del jalón, podemos calcular el cuarto miembro de la proporción que es laaltura del acantilado.
Semidieron ambas distancias horizontales: la pequeña midió 15 pies, la grandemidió 500 pies.
Finalmenteel ingeniero anotó:
15 : 500 = 10 : x
15 x = 500 x 10
x=333,3 pies
Entonces,la altura del acantilado es de 333 pies.
Vincúlese a nuestras Redes Sociales:
Google+ LinkedIn YouTube Facebook Twitter
.
.
Comentarios
Algo para decir?
Usted debe estar logueado para escribir un comentario.