La importancia del Azar: Más allá de un juego de dados

noviembre 17, 2023

Por Gustavo Ibáñez Padilla.

Álea iacta est – la suerte está echada. Estas palabras, atribuidas a Julio César en el crucial momento en que cruzó el río Rubicón, resonaron a lo largo de la historia como un recordatorio de que la vida está impregnada de elementos impredecibles. Hoy, en el siglo XXI, el concepto de azar cobra especial relevancia, por lo que resulta de gran interés explorar su papel en nuestras decisiones y considerar su presencia constante en eventos aparentemente insignificantes.

Julio César cruza el Rubicón. Alea iacta est

.

La aleatoriedad, definida como la imprevisibilidad inherente a ciertos eventos, procesos o modelos, encuentra su lugar en diversas disciplinas, desde las matemáticas hasta la filosofía y la física cuántica. En el vasto tablero de la existencia, cada lanzamiento de dados representa un encuentro con lo incierto.

En el ámbito matemático, se plantea una interesante paradoja: solo una secuencia infinita puede considerarse verdaderamente aleatoria. Para secuencias finitas, la influencia de un determinismo subyacente se hace evidente, ya que siempre es posible encontrar una fórmula que las reproduzca. Sin embargo, en la física cuántica, se postula una aleatoriedad profunda, desafiando nuestra capacidad de prever los resultados incluso en eventos macroscópicos como el lanzamiento de dados.

Blaise Pascal, Pierre de Fermat, Christiaan Huygens y Jacob Bernoulli, pioneros en la exploración de la probabilidad, sentaron las bases de lo que hoy conocemos como Teoría de Probabilidad. Estos visionarios matemáticos avanzaron en la comprensión de la aleatoriedad estadística, considerando las frecuencias de bloque como medida de lo impredecible.

Pioneros de la Probabilidad

.

La historia de la aleatoriedad se entrelaza con la eterna disyuntiva entre el libre albedrío y el determinismo. A lo largo de milenios, la filosofía y la teología han debatido sobre la autonomía de nuestras decisiones frente a un destino predestinado. Es en este diálogo entre lo impredecible y lo inevitable donde la aleatoriedad ocupa un papel crucial.

El término ‘aleatorio’ no solo denota la carencia de propósito, causa u orden, sino que también se asocia con propiedades estadísticas medibles, como la ausencia de tendencias o correlaciones identificables. En este sentido, la aleatoriedad se manifiesta como un fenómeno que trasciende la casualidad, influenciando tanto la ciencia como la historia.

A medida que avanzamos en la comprensión de la aleatoriedad, la Teoría de la información introduce la entropía como una medida de desorden, y los matemáticos Gregory Chaitin, Andréi Kolmogórov y Ray Solomonoff aportan la noción de aleatoriedad algorítmica. En este enfoque, la imprevisibilidad de una secuencia se relaciona con su capacidad para resistir la compresión algorítmica, desafiando la idea de un universo regido por patrones predefinidos. A pesar de ello cabe aquí recordar la frase del genial Albert Einstein: “Dios no juega a los dados”.

Albert Einstein

.

Pero, ¿cómo afecta el azar a nuestras vidas cotidianas? En situaciones aparentemente mundanas, como elegir una ruta para el trabajo o decidir qué película ver, la aleatoriedad se manifiesta. Tomemos el ejemplo de las aplicaciones de navegación: cada vez que confiamos en ellas para dirigirnos, confiamos en algoritmos que incorporan elementos de azar en la búsqueda de la ruta más eficiente. Detrás de la aparente simplicidad de estas decisiones se encuentra la complejidad de lo impredecible.

Incluso en la toma de decisiones más trascendentales, como elegir una carrera o a la pareja de vida, la influencia del azar no puede subestimarse. La vida está llena de giros inesperados, encuentros fortuitos y oportunidades que surgen sin previo aviso. En palabras de Nassim Taleb, autor de El Cisne Negro, la vida está llena de eventos altamente improbables que desafían nuestras expectativas y definen nuestro destino.

Álea iacta est. Se echó el dado. El dado fue lanzado. La suerte está echada.

.

En última instancia, la importancia del azar en nuestra vida radica en su capacidad para desafiar nuestras certezas y abrir puertas a lo inexplorado. Al reconocer la presencia constante de la aleatoriedad, podemos abrazar la incertidumbre como parte integral de nuestra existencia. Cada paso que damos, cada decisión que tomamos, se convierte en una apuesta contra las probabilidades, recordándonos que, al igual que Julio César al cruzar el Rubicón, estamos echando el dado de la vida.

En un mundo cada vez más complejo e interconectado, la comprensión de la aleatoriedad se convierte en una herramienta invaluable. Nos permite adaptarnos a lo inesperado, encontrar oportunidades en los desafíos y abrazar la diversidad de experiencias que la vida tiene para ofrecer. En última instancia, la suerte puede estar echada, pero cómo enfrentamos la incertidumbre y aprovechamos las oportunidades que se presentan es el verdadero juego que define nuestra historia.

Fuente: Ediciones EP, 17/11/23.

Información sobre Gustavo Ibáñez Padilla


Más información:

Matemáticas y juegos de azar

Medidas de Tendencia Central en el Mundo Financiero

La Regresión a la Media y la Ley de los Grandes Números: Su Impacto en las Finanzas y la Gestión del Riesgo

.

.

Lotería y Probabilidad

julio 30, 2018

Lotería y Probabilidad

Loterias de España

españa botonPocas personas podrán decir que se han resistido a la tentación de probar suerte con algún juego de azar, como lo atestigua todos los años el balance económico de Loterías y Apuestas del Estado. En 2005 los españoles se gastaron más de 28 mil millones de euros en juegos de azar, que una vez descontados los premios, daría lugar a un gasto efectivo de nueve mil millones de euros. Esto supone un consumo per cápita de 642 euros y las ventas en el 2006 aumentaron un 5,54 %. Un 60% de esta cantidad corresponde a los juegos privados (tragaperras, casinos y bingos), otro 33% a loterías públicas y un 7% a los juegos de la ONCE .

Los españoles podrían programar sus apuestas en función de las probabilidades pero, para esto, tendrían que analizar los índices de cada uno de los sorteos existentes. De mayor a menor, las probabilidades de tener más suerte y ganar son las siguientes:

• La Lotería Nacional, en el sorteo de los jueves, la probabilidad es de 1 entre 600.000, y en el sorteo de navidad , la probabilidad es de 1 entre 85.000.
• Seguida a mayor distancia de la Quiniela, que para llevarse el pleno, la probabilidad es de uno entre casi cinco millones.
• La suerte de ganar el premio mayor con la Lotería Primitiva es de uno entre 14 millones. Le sigue El Cuponazo, con una probabilidad de uno entre 15 millones.
• Luego se sitúa El Gordo de la Primitiva con una probabilidad de llevarse el primer premio de 1 entre unos 31 millones y por último El Euromillón, con una probabilidad de uno entre 76 millones.
En cuanto a los juegos que más pasiones levantan destaca sin duda la Lotería Nacional, con una participación del 57%; seguida por la Primitiva, con el 25%; la Bono Loto, con el 7%; la Quiniela con el 6% y, por último, El Gordo de la Primitiva, con el 4%.
Vamos a hacer un estudio detallado de cada una de las probabilidades de las distintas loterias nacionales:

• La Primitiva y la Bono Loto » 1 entre 13.983.816
• El Gordo de la Primitiva »1 entre 31.625.100
• Euromillones » 1 entre 76.275.360
• Lotería Nacional » 1 entre 600.000(Jueves)1 entre 85.000(Navidad)
• La Quiniela y el Quinigol » 1 entre 4.782.969
• Hípica nacional » 1 entre 8.835.372 (Lototurf)
1 entre 60.080.000 (Quíntuple Plus)
• Cupón Once » 1 entre 15 millones
• El Combo de la Once »1 entre 15 millones

[ El nuevo mundo on-line: Artículo relacionado: Crece la industria de las apuestas en España ]

Esperanza Matemática de las Loterías

Las probabilidades de las loterías por si mismas son irrelevantes. Lo que realmente importa es si el valor del premio multiplicado por la probabilidad (en escala de 0 a 1).

Una definición de Esperanza Matemática
Una definición fácil de entender de lo que aquí llamaremos «Esperanza Matemática» es la relación entre el premio obtenido y probabilidad de acertar. La definición matemática de «Esperanza Matemática» o Valor Esperado es bastante más compleja, pero en el desarrollo de este Sistema se limita a Premio x Probabilidad.
Aquí, un valor para la esperanza matemática de 1 indica «juego justo», un «menor que uno» indica «desfavorable para el jugador» y un «mayor que uno» es «favorable para el jugador» ( en las definiciones formales el cero suele ser el «juego justo», y los valores negativos o positivos indican «positivo o negativo para el jugador»).

loteria 01• Si la esperanza matemática es 1, el juego es «justo». Por ejemplo, apostar 1 euro a que una moneda sale cara o cruz, si el premio por acertar son 2 euros, y si se pierde, 0 euros. La esperanza del juego es 2 • (1/2) = 1. Entonces, consecuentemente con la teoría de juegos, podría pagar el euro para jugar o para rechazar jugar, porque de cualquier manera su expectativa total sería 0.
• Si la esperanza matemática es menor que 1, el juego es «desfavorable para el jugador». Un sorteo que pague 500 a 1 pero en el que la probabilidad de acertar sea de 1 entre 1.000, la esperanza matemática es 500 • (1/1.000) = 0,5.
• Si la esperanza matemática es mayor que 1, el juego es «favorable para el jugador», todo un «chollo» para el jugador. Un ejemplo sería un juego en el que se paga 10 a 1 por acertar el número que va a salir en un dado, en donde hay una probabilidad de acertar es de 1 entre 6. En este ejemplo el valor de la esperanza matemática es 10 • (1/6)=1,67 y por tanto en esas condiciones es juego «beneficioso» para el jugador.

Esperanza matemática de las loterías
La esperanza matemática es un valor importante que conocer para cualquier tipo de premio, en función de su dificultad, y para cada sorteo concreto.
En la Primitiva, la esperanza matemática general o promedio es sencillamente 0,55 y en Euromillones es 0,5. Se corresponde a la cantidad que se devuelve en premios: el 55% o el 50% del total apostado por los jugadores. Ese dinero siempre se devuelve, teniendo en cuenta que con el tiempo los premios no entregados se acumulan en Botes.
En la Primitiva el reparto de premios funciona de modo que la cantidad jugada por todos los jugadores (excepto el 45% que se queda la organización) se suma y reparte en diversas categorías: una parte para los de más aciertos, otra parte para premios menores, reintegros, etc. Esto marca ciertamente diferencias entre la esperanza matemática (premios por probabilidad) de las diferentes categorías de premios. La esperanza matemática más alta es la del Reintegro que es de 0,1 (10 %).
Estos cálculos, que de por sí son sencillos, se ven complicados por algunas reglas relativamente recientes, como el «premio fijo para los acertantes de 3» o «los acertantes de 5 nunca pueden ganar más que los de 6», pero son en cualquier caso calculables con precisión.
En general, y para la Loto tradicional la norma a grandes rasgos es que la esperanza matemática es mayor que 1 cuando la cantidad de premios total (el bote más el 55% de la cantidad que todos los jugadores apuestan ese día) es mayor de lo que valen 13,9 millones de apuestas (dado que la probabilidad de acertar es de 1 entre 13,9 millones) y esto ocurre en muy muy muy raras ocasiones.
Pero imagenemos como hipótesis de trabajo que llega un día en el que se ha acumulado un bote de 20 millones de euros y en el que por alguna circunstancia nadie juega a la Loto excepto una persona. A 1 euro por apuesta, esto supondría pagar unos 14 millones de euros para jugar a todas las combinaciones y embolsarse todos los premios: el bote más lógicamente la recuperación del 55% de lo apostado y un 10% en reintegros (7,7 millones de euros, correspondiente al resto de premios menores de 5, 4, reintegros, etc.) Resultado: apostando 14 millones se recuperarían 27,7 millones de euros. Casi otros 14 millones de beneficio. ¡Buen negocio!

Un ejemplo real fue el sorteo de Bonoloto (Loto 6/49) del 18/11/1990. Un bote de 1.151 millones de pesetas se sumó a una recaudación de sólo 374 millones. A 25 pesetas por apuesta se hicieron en total unos 15 millones de apuestas. La probabilidad de acertar 6 era de 1 entre 14 millones, como siempre (y en total se repartía el 55% de la recaudación, como siempre). El premio de 1.200 millones que recibió un único acertante de 6 números tenía como base una esperanza matemática de 3,2 (frente a 1 que sería lo normal en un “juego justo” o 0,55 en un día convencional sin bote). Es decir, si el juego hubiera sido “justo” tanto para el jugador como para la banca, el premio debería haber sido de sólo unos 350 millones. Pero el ganador se llevó 1.200 millones porque había un bote acumulado de muchísimas semanas. La esperanza matemática promedio de ese día, contando todos los premios, era de 3,6. ¡Ese día ciertamente era mejor jugar a la Loto que no jugar!
Casi siempre, cualquier juego real de apuestas tiene esperanza menor que 1: lo más probable es perder dinero. El motivo por el que se juega es que en caso de ganar, los premios son de escándalo. Estamos dispuestos a perder una cantidad pequeña de dinero casi con seguridad a cambio de la posibilidad, por pequeña que sea, de hacernos ricos de la noche a la mañana.
Fuente: http://www.estadisticaparatodos.es
———————————————————————
Más información:

La industria de las apuestas continúa su escalada

http://www.casinoonlineespana.es/

casino on line 01

.


Vincúlese a nuestras Redes Sociales:

Google+      LinkedIn      YouTube      Facebook      Twitter


Cómo lograr su Libertad Financiera

.

.

Fermat y Pascal padres de la probabilidad moderna

mayo 1, 2017

Fermat, Pascal y los inicios de la probabilidad moderna

Te contamos cuáles fueron los comienzos de la actual teoría de la probabilidad

Por Miguel Ángel Morales.

 

Fermat, Pascal y los inicios de la probabilidad moderna
.

Desde el porcentaje de que llueva o nieve un día concreto en una zona determinada hasta la idoneidad de apostar o no según la mano de póker que llevemos, pasando por las cuotas a favor o en contra de la victoria de un cierto equipo y muchos otros fenómenos físicos o económicos. Gran parte de los datos que nos encontramos a diario en muchos ámbitos están basados en el cálculo de probabilidades.

En 1933, Andréi Kolmogórov establecía la que se conoce como concepción axiomática de probabilidad, dando rigor de esta forma a muchos de los estudios que se habían realizado con anterioridad en esta rama y comenzando así el estudio moderno de la teoría de probabilidades. Pero el estudio de la probabilidad comenzó mucho antes, y se puede decir que los precursores de esta teoría fueron Pierre de Fermat y Blaise Pascal.

Nos remontamos al siglo XVII. La teoría de números da sus primeros pasos como rama de las matemáticas gracias a Pierre de Fermat, y la geometría analítica hace su aparición en las matemáticas apoyada en los estudios del propio Fermat y de René Descartes. Al margen de todo esto, la alta sociedad francesa se entretiene con juegos de azar.

Pierre de Fermat
Pierre de Fermat.

Uno de sus integrantes, Antoine Gombaud, Caballero de Méré, era un experto jugador (aparte de escritor y pensador). A pesar de su sabiduría en lo que a juegos de azar se refería, había dos que le creaban dudas, que no entendía completamente. Por ello, decidió planteárselos a Pascal.

El primero que vamos a comentar es el siguiente. Supongamos que tiramos un dado cuatro veces y pensemos en la probabilidad de que salga al menos un 6 en alguna de las tiradas (da igual en cuál de ellas). La cuestión es la siguiente: ¿nos conviene apostar a que saldrá al menos un 6? Veámoslo con matemáticas.

Vamos a calcular la probabilidad de que no salga ningún 6 en ninguna de las tiradas, y el resultado se lo restaremos a 1, obteniendo así la probabilidad de que salga al menos un 6.

La probabilidad de que no salga un 6 en una tirada es 5/6 (cinco valores que no son 6 entre seis valores posibles), y como tiramos cuatro veces (y las tiradas son independientes), la probabilidad de que no salga ningún 6 en esas cuatro tiradas es:

(5/6) · (5/6) · (5/6) · (5/6) = (5/6)4

Ahora la probabilidad de que salga al menos un 6 saldrá de restar ese resultado a 1:

P(Al menos un 6) = 1-(5/6)4=0’5177…

Como nos sale un resultado mayor que 0’5, nos conviene apostar a que saldrá al menos un 6 en cuatro tiradas de un dado.

Gombaud sabía que esa apuesta era ligeramente favorable que la contraria (aunque seguro que no hizo los cálculos como hemos mostrado aquí), y a partir de aquí se planteó qué ocurriría al tirar dos dados y esperar que en ambos salga 6 al menos una vez. Su razonamiento fue algo parecido a lo siguiente:

“La probabilidad de sacar 6 en ambos dados (en una tirada) es igual a multiplicar por 1/6 la probabilidad de sacar un 6 con un dado en una tirada. Por tanto, para igualar la situación al problema anterior habría que hacer 4 · 6 = 24 tiradas. Así conseguimos un problema en el que la probabilidad de sacar 6 en ambos dados al menos una vez es la misma que la de sacar un 6 al menos una vez en el caso anterior, por lo que interesa apostar a favor de ese hecho.”

Blaise Pascal
Blaise Pascal.

El caso es que nuestro caballero de Mére, a pesar de que aparentemente la apuesta era favorable, veía que a la larga perdía más veces que ganaba. Vamos, que la apuesta no parecía tan favorable, pero no sabía por qué. ¿Podrías ayudar tú a Antoine? Piénsalo, más adelante daremos la respuesta.

El segundo problema es, bajo mi punto de vista, más interesante. Os pongo en situación:

Imaginemos que dos jugadores A y B juegan con una moneda, tirándola y viendo lo que sale en ella. Si sale cara, A acumula un punto, y si sale cruz lo acumula el jugador B. Ambos han apostado 32 € y gana el jugador que antes llegue a 5 puntos, llevándose entonces todo el dinero (al parecer, el problema trataba de tirar un dado y cada uno había elegido un número concreto, pero para ilustrar el problema nos vale nuestro ejemplo). Por circunstancias que no vienen al caso, hay que interrumpir el juego antes de que uno de los jugadores gane, estando en ese momento el marcador así: A lleva 4 puntos y B lleva 3 puntos. La cuestión es la siguiente: ¿cómo debe repartirse el dinero?

Este problema había sido estudiado anteriormente por Luca Pacioli y por Tartaglia, pero ambos dieron respuestas erróneas. Nuestro caballero de Mére se lo propuso a Pascal, que lo puso en conocimiento de Fermat mediante correspondencia. En esa correspondencia entre estos dos monstruos de las matemáticas se resolvió este problema y, de paso, se creó el germen de la teoría del cálculo de probabilidades.

Pero vayamos al problema en sí. La primera idea, en cierto modo razonable, sería repartir el dinero total, 64 €, en proporción según los puntos que llevan cada uno de ellos en el momento en el que el juego se corta. Como en ese momento A lleva 4 puntos y B lleva 3 puntos, habría que dividir 64 entre 7 y dar 4 partes a A y 3 partes a B…

…el problema es que este razonamiento no da un resultado justo. Por ejemplo, imaginad que sólo se ha hecho una tirada y ha salido cara. Entonces A lleva un punto…y las circunstancias obligan a terminar ahí el juego. Según el razonamiento anterior, A debería llevarse todo el dinero, lo que sería a todas luces injusto.

El reparto más justo (y, por tanto, el correcto) debe ir en función de la probabilidad que tendría cada uno de ganar el juego si éste no se hubiera interrumpido. Vamos a analizar cuáles serían las probabilidades de cada uno y las usaremos después para repartir el dinero correctamente.

Como decíamos, el jugador A lleva 4 puntos y el B lleva 3 puntos, y gana el primero que llegue a 5 puntos. Si en la siguiente tirada hubiera salido una cara, el jugador A llegaría a 5 puntos y, por tanto, ganaría. La probabilidad de que ocurra eso es la probabilidad de que salga cara en una tirada: 1/2.

Si hubiese salido cruz, el jugador B sumaría 4 puntos. Como el A también lleva 4, todavía no ha ganado nadie, por lo que hay que tirar de nuevo. Si en esa segunda tirada sale cara, gana el A, y esto ocurre con probabilidad

(1/2) · (1/2) = 1/4 (el primer 1/2 por la cruz y el segundo por la última cara)

Y si en la segunda tirada sale cruz, gana el jugador B. La probabilidad de que eso ocurra es también

(1/2) · (1/2) = 1/4 (el primer 1/2 por la primera cruz y el segundo por la última cruz)

Analizando estos casos, vemos que la probabilidad de que gane A es:

P(Gana A)=1/2 + 1/4 = 3/4

Y la probabilidad de que el ganador sea B es:

P(Gana B)=1/4

Entonces debemos dividir el dinero total en cuatro partes y darle tres a A y una a B. Por tanto, al jugador A le corresponden 48 € y al B le deben dar 16 €.

Volvamos ahora al primer problema. ¿Lo has resuelto? Razonando como en el caso de una sola tirada de dado seguro que sí. Pero por si acaso vamos a comentarlo.

Vamos a calcular la probabilidad de que no salga el resultado (6,6), y después, como antes, le restaremos esa probabilidad a 1. Como el resultado (6,6) puede darse solamente en 1 de los 36 casos posibles, y tiramos el dado 24 veces, tenemos que:

P(No salga (6,6)) = (35/36)24

Ahora le restamos ese valor a 1 y obtenemos la probabilidad de que salga (6,6) al menos una vez en 24 tiradas:

P(Al menos sale (6,6) una vez en 24 tiradas) = 1 – (35/36)24 = 0’4914…

Lo que significa, al ser menor que 0’5, que apostar a ese resultado es, a la larga, perjudicial para el jugador.


Como ya hemos comentado, Pascal y Fermat comentaron y dieron solución a estos problemas en la correspondencia que se generó entre ambos (Fermat, sobre todo, era mucho de comunicarse con otros matemáticos por correspondencia) después de que el caballero de Mére se los propusiera a Pascal. Aquí tenéis traducciones al inglés de parte de esa correspondencia, aunque por desgracia no todas las cartas han llegado a nuestros días. El responsable de formalizar todos estos argumentos fue Christiaan Huygens, que tuvo conocimiento de esta correspondencia sobre 1655. En 1657 publicó el tratado De Ratiociniis in Ludo Aleae (Calculando en juegos de azar), escrito en el que resolvía los problemas sobre probabilidades que circulaban en aquella época. Este tratado se convirtió en el primero trabajo publicado sobre cálculo de probabilidades.


Como habéis podido ver, el simple planteamiento de un problema práctico por parte de Antoine Gombaud, caballero de Mére, acabó dando lugar a toda una teoría matemática con multitud de usos y aplicaciones. Y no es el único caso, recordad el caso de los puentes de Königsberg y la teoría de grafos. Por ello, no debemos restarle importancia a ninguno de los problemas que se nos puedan ocurrir o que nos puedan aparecer, ya que nunca se sabe la importancia que pueden llegar a tener o las aplicaciones que se les puede encontrar.

Fuente: elpais.com

Vincúlese a nuestras Redes Sociales:

Google+      LinkedIn      YouTube      Facebook      Twitter

Más información:

Matemáticas y juegos de azar


Cómo lograr su Libertad Financiera

.

.

Evolución matemática de los juegos de azar durante el siglo XIX

junio 12, 2014

La Estadística y la Teoría de la Probabilidad en el Fortalecimiento de los Juegos de Azar:

¿Qué ocurría con la evolución de los juegos de azar durante el siglo XIX, campo primigenio en el cual había surgido la Teoría de la Probabilidad que paulatinamente se había extendido y alcanzado un desarrollo tan impresionante en todas las áreas de la ciencia?

Durante ese siglo prosperaron inicialmente los casinos que se inauguraron en los balnearios alemanes cercanos a los paisajes alpinos de la vertiente del río Rin (Wiesbaden, BadenBaden, Bad Homburg, Spa, SaxonlesBains, etc.), también florecieron numerosas casas de juego en el Estado de Louisiana antes de que comenzara la persecución puritana de los ciudadanos contra esa actividad pecaminosa que luego se propagó hacia otros pueblos de Estados Unidos a través del rió Mississippi, después surgieron los lujosos casinos de la Riviera Francesa como el de Monte Carlo a la cabeza del mundo por mucho tiempo, también se consolidaron los exclusivos clubes de juego para caballeros y las apuestas hípicas en el Reino Unido, florecieron los garitos y los Círculos Privados de juego en la alegre París convertida en una «ciudadespectáculo» después de su renovación urbanística concluida bajo el mando del Barón Haussmann, así como proliferaron los garitos en otras acogedoras ciudades francesas, y finalmente también crecieron los rústicos casinos a la americana (el famoso Saloon) durante el proceso de la colonización del Lejano Oeste.

Fundamentación matemática de los juegos de azar durante el siglo XIX.

Los flâneur del siglo XIX, es decir, los consumidores del ocio de la Modernidad, esto era todo lo que veían que ocurría ante sus ojos, pero tal vez muy pocos de ellos imaginaban que detrás de la fachada de los clubes, de las casas de juego, de las ventanillas de recepción de apuestas, de los garitos y de los casinos, el funcionamiento del negocio estaba dictado solamente por los últimos avances de la Teoría de la Probabilidad combinada con los aportes de la Estadística como herramienta de medición de los hechos inciertos o aleatorios. En efecto, en aquel tiempo los empresarios del ocio veían los juegos de azar simplemente como un «buen negocio comercial», que sólo es rentable si desde un comienzo le garantiza a la Banca la expectativa de obtener económicamente un cuantificable Valor Esperado (Expected Value) que constituye la Ventaja Matemática a su favor (House Edge), además de que tal rentabilidad sólo se puede concretar si siempre se garantiza un comportamiento impredecible del juego y si sólo se le ofrece al apostador opciones de triunfo «no equitativas» y desiguales frente a las reales opciones de triunfo de la Banca.

Estos primeros empresarios de los casinos, como los famosos hermanos Blanc que dirigieron el casino de Bad Homburg o el de Monte Carlo, eran gente que conocía del comercio, de la especulación financiera en las bolsas y en los bancos, de los criterios económicos aplicables a los negocios de alto riesgo, y por eso estas personas eran seguidoras de los últimos avances matemáticos y estadísticos ocurridos en el campo actuarial y de los seguros que eran una actividad comercial en la que el lucro se obtenía a partir de explotar las expectativas de ganancia o de pérdida en torno de la fortuita ocurrencia o no ocurrencia de ciertos siniestros (naufragios de barcos, deterioro de mercancías, incendios de fábricas, fallecimientos, robos, etc.), es decir, los empresarios de los casinos aplicaron en la administración de su negocio de los juegos de azar muchos de los criterios económicos y matemáticos que regían en el campo de los seguros que era el tipo de negocio más semejante a su actividad, y por eso ellos eran amplios conocedores de conceptos tales como la Teoría de la Ruina, la Pérdida Máxima Probable, el Cálculo del Riesgo Esperado, el Cálculo de las Reservas Disponibles, etc.

Estos primeros empresarios profesionales de los casinos para la adecuada administración de sus negocios del ocio también se asesoraban de importantes matemáticos pagándoles jugosos honorarios, y eran seguidores asiduos de las discusiones y las publicaciones sobre temáticas de probabilidad y estadística producidas por los sabios de su tiempo, por las asociaciones científicas, por las agremiaciones de contables o por los profesores de las universidades de Cambridge, Harvard, Oxford, la Sorbona, Turín, Berlín, etc. Además, tomando como referente el modelo de la Distribución Normal de la probabilidad ampliamente desarrollado por Laplace, Gauss, Poisson o Chebyshev, estos empresarios de los casinos sabían que en cualquier juego de azar, entre más jugadas se realicen, lo más probable es que las apariciones aleatorias de los resultados esperados se concentrarán dentro de ciertos límites en torno de un número ideal de apariciones, es decir, estadísticamente se prevé que los juegos de azar tienen un comportamiento más o menos regular que se puede proyectar previamente mediante el cálculo de probabilidades, comportamiento dentro del cual es poco probable que un resultado específico llegue a aparecer una cantidad excesiva de veces superior a las previstas, hasta el punto de volverse «predecible» a los ojos de los jugadores en contra de los intereses económicos de la Banca. Los empresarios que administraron los primeros grandes casinos le apostaban a la ocurrencia de esa forma de distribución de la probabilidad, le apostaban a que siempre el juego se comportaría aleatoriamente arrojando resultados que aunque en cada jugada son impredecibles, en todo caso globalmente se enmarcan dentro de unos límites más o menos previsibles desde el punto de vista estadístico, y por tanto, si en la mayoría de las ocasiones esos límites se dan, entonces se puede prever que al final la Banca siempre hará efectiva su ventaja matemática sobre los jugadores obteniendo importantes ingresos sobre todo el dinero que fue apostado por ellos.

Todo este conocimiento matemático, estadístico, contable y económico fue aplicado por los empresarios de los casinos en la creación de los nuevos juegos de azar, en la formulación de las reglas aplicables a cada juego, en el diseño de los tapetes de las mesas, en la selección precisa de las únicas opciones a las cuales les pueden apostar los jugadores, en el establecimiento de los montos de los premios que pueden ser pagados, en la fijación de los topes mínimos y máximos de las apuestas que se pueden admitir en cada mesa, etc. Se puede afirmar que, paradójicamente, desde el siglo XIX en las mesas de los juegos de azar de los casinos «nada ocurre al azar», porque los nuevos juegos de azar de la Modernidad no surgieron por generación espontánea ni por tradición cultural ni por caridad para agradarle a los consumidores del ocio, sino que surgieron como parte del engranaje de un gran negocio basado en la explotación de la ventaja matemática (House Edge) que conscientemente se establece a favor de la Banca en cada juego ofrecido al público.

En síntesis, desde el siglo XIX en una mesa de juego de un casino todo está debidamente calculado y planeado, para que desde el mismo momento en que el jugador coloque su apuesta sobre el tapete, las probabilidades y la estadística indiquen que esa apuesta muy probablemente deberá generar un flujo de rentabilidad a favor de las arcas de la Banca. Incluso la recaudación de este flujo rentable de dinero fue perfeccionada y comenzó a operar «automáticamente» gracias al ingeniero norteamericano Charles Fey, cuando basado en los diseños de las máquinas calculadoras, las cajas registradoras, los organillos de manivela, etc., inventó en 1897 la denominada «Máquina Tragamonedas» (Slot Machine), novedoso aparato que no sólo inauguró la gran época en que el comportamiento aleatorio de los juegos de azar comenzó a ser simulado mediante artilugios mecánicos, sino que además a la postre permitió que los empresarios de los casinos tuvieran una mayor seguridad acerca de la expectativa de obtener la recaudación de un porcentaje fijo de rentabilidad sobre el funcionamiento diario de tales máquinas.

Fortalecimiento de las Creencias Especulativas de los Apostadores respecto de los Juegos de Azar:

¿Qué hacían los jugadores y los apostadores del siglo XIX mientras todo lo anterior ocurría en la evolución matemática de los juegos de azar y del negocio de los casinos?

Al respecto un gran porcentaje de los jugadores posiblemente eran hábiles tahúres muy tramposos, que preferían aquellos juegos en los que tenían acceso a la manipulación directa de las cartas o de los dados, o preferían juegos en los que podían actuar en colusión con otros jugadores para así poder realizar todo tipo de timos y trampas contra los contrincantes ingenuos, únicas vías que encontraban seguras para la obtención de ganancias en los juegos de azar.

Muchos otros jugadores, fieles a la noble filosofía consumista del flâneur, consideraban impropio y poco caballeroso pensar en el dinero perdido en los juegos de azar o siquiera expresar cualquier emoción ante el anhelo de ganar una fortuna a través de ese medio: se jugaba, luego se ganaba o se perdía, pero siempre se aceptaban los resultados del azar con gallardía y caballerosidad.

Otros jugadores, menos dóciles a someterse pasivamente al imperio del azar, quizá aplicaban algunos análisis combinatorios muy simples para calcular sus expectativas de triunfo o para elegir las opciones a las que se les debía apostar.

Un creciente porcentaje de jugadores creían a pie juntillas en la falacia de la «Ley del Equilibrio Cósmico» que necesariamente se debe producir en la cantidad de apariciones de los resultados opuestos de un juego de azar entre más jugadas ocurran, falacia que desde los tiempos de D’Alembert inspiró a muchos apostadores a crear diversos sistemas de apuestas supuestamente infalibles, aplicables en mayor medida al TrenteetQuarante o la ruleta, sistemas absurdos basados realmente en simples martingalas y en progresiones en el incremento o en el descenso de la cantidad apostada en cada jugada, tales como la Gran Martingala, la Pequeña Martingala, el sistema Labouchere, la Progresión de Wrangler, el sistema Philiberte, el sistema Fitzroy, el sistema Tiers et Tout, el sistema Montant Belge, el sistema Paroli, etc.

Otros más, tal vez habían escuchado que la estadística era una ciencia que trabajaba de la mano con el cálculo de probabilidades para el análisis del comportamiento de los eventos aleatorios, pero lo único que ellos en verdad sabían sobre la aplicación de la estadística era recolectar unos pocos resultados aparecidos en algún juego de azar y comenzar a apostarle a los resultados que a primera vista parecían «más dominantes» o «más salidores» en el grupo analizado, sin emplear ningún procedimiento matemático serio para verificar si esos resultados presuntamente dominantes o salidores en verdad representaban una «desviación significativa» en el comportamiento aleatorio del juego o si solamente se enmarcaban dentro de los límites previsibles del azar.

Solamente hasta 1873 se conoció de la legendaria hazaña del ingeniero inglés Joseph Hobson Jagger (1830−1892), quien al parecer usó las técnicas de muestreo, de análisis estadístico y de cálculo de probabilidades para descubrir unas fuertes tendencias en una de las ruletas del casino de Monte Carlo, descubrimiento que según se dice le permitió amasar una gran fortuna al apostarle a los números que más probabilidades tenían de aparecer. Después de esta hazaña se conoció de un grupo de jugadores italianos que hacia 1880 también aplicaron las técnicas de la estadística y del cálculo de probabilidades para amasar una gran fortuna nuevamente en las ruletas desviadas de Monte Carlo, y posteriormente durante varias décadas no se volvió a conocer ninguna noticia, anécdota, sistema o libro que hablara a profundidad, con detalles y con ejemplos prácticos, sobre la manera de aplicar de forma conjunta la Estadística y la Teoría de la Probabilidad a concretos juegos de azar para amasar fortunas.

Resulta curioso que durante el siglo XIX los empresarios que administraron los casinos usaron a plenitud todos los elementos de la Estadística y de la Teoría de la Probabilidad para perfeccionar la ventaja matemática establecida en los juegos de azar y protegerse contra el riesgo, contra la probabilidad de ruina, contra las desviaciones inusuales en la aparición de los resultados aleatorios, contra la falta de reservas económicas, etc.; mientras que la mayoría de los jugadores se quedaron estancados en el uso precario del análisis combinatorio o en la creencia en la inmutable Ley del Equilibrio Cósmico que fue defendida por D’Alembert quizá en un momento de desvarío. En otras palabras, absurdamente para enfrentarse a los juegos de azar de la Modernidad los jugadores no estaban empleando las mismas herramientas matemáticas, estadísticas y del cálculo de probabilidades que usaron los empresarios para lograr el perfeccionamiento de la ventaja matemática establecida en tales juegos.

La culpa tal vez no era de los jugadores, sino de la ausencia de fuentes de información especializadas y serias en la aplicación de la Estadística y de la Teoría de la Probabilidad a los juegos de azar. En efecto, si uno analiza las grandes obras sobre estadística y probabilidad del siglo XIX escritas por verdaderos genios matemáticos de la talla de Laplace, Gauss, Poisson, Quetelet o Chebyshev, encuentra que estos sabios para poder explicar los conceptos básicos usados en sus obras acuden inicialmente a ejemplos muy simples basados en el lanzamiento de monedas, el lanzamiento de dados, la extracción aleatoria de cartas de un mazo, la extracción aleatoria de balotas de una urna, el análisis del Problema de los Puntos, etc., pero luego estos sabios se elevan a las alturas intelectuales y se adentran en la axiomatización de los conceptos explicados ligando su aplicación a la solución de problemas más trascendentales que merecían toda su atención, tales como el desciframiento de las órbitas de los planetas, la forma como se comporta la luz, el cálculo de la trayectoria de los planetoides, el cálculo de la resistencia de los metales usados en la fabricación de las mercancías, el cálculo del grado de error cometido en una observación, el desvío esperado en el comportamiento de una variable en un experimento de laboratorio, el cálculo esperado en el crecimiento de la población, el cálculo de la ocurrencia de posibles siniestros asegurados, etc. En las obras de estos grandes autores matemáticos no hay referencias a la manera práctica de aplicar y sacar provecho del Muestreo Estadístico, la Distribución Normal, la Varianza, la Desviación Típica o los Niveles de Confianza a juegos de azar concretos como el Baccarat, el TrenteetQuarante, la ruleta francesa, el ChuckaLuck, las loterías, etc.

Lo anterior no significa que durante el siglo XIX no se hayan escrito obras de literatura especializada sobre los juegos de azar, pues de hecho se escribieron muchas, mereciendo mención especial por su popularidad las siguientes:

An exposure of the arts and miseries of gambling, (1843). Escrita por Jonathan H. Green y publicada en Filadelfia.

Traité du TrenteQuarante contenant des analyses et des faits pratiques du plus haut intéret suivis d’une collection de plus de 40.000 coups de banque, (1853). Escrita por G. Grégoire y publicada en París.

Nouveau manuel complet des jeux de calcul et de hasard ou Nouvelle Académie des Jeux, (1853). Escrita por Lasserre, Lebrun y Leroy, y publicada en París.

Routledge’s Whist Player’s Handbook, (1854). Escrita por N. Routledge y publicada en Londres.

Jeux de la Roulette et du Trente et Quarante, Méthode, (1880). Escrita por Menaldo y publicada en Niza.

Le jeu public et Monaco, (1882). Escrita por Le Docteur Prompt, y publicada en Paris.

Les grands jeux: Roulette, Trente & Quarante, Baccarat, Bourse; (1885). Escrita por Pierre Boissier y publicada en París.

Il Giuoco del Lotto, (1886). Escrita por M. de Ciutiis y publicada en Nápoles.

Une lune de miel à Monte Carlo, (1887). Escrita por Adolphe Belot y publicada en Paris.

Girotechnie ou la description scientifique de la roulette, (1890). Escrita por el doctor C. Surville y publicada en Niza.

Montecarlo occulto, Montecarlo palese, (1899). Escrita por Barone York y publicada en Turín.

Sin embargo, estas obras, y muchas otras de su mismo estilo escritas y publicadas en el siglo XIX, se dedican principalmente a explicar las reglas aplicables a populares juegos de azar como el veintiuno, el póquer, el whist, la ruleta, el TrenteetQuarante, el baccarat, etc., pero no ofrecen un análisis serio de esos juegos que se fundamente en el cálculo de probabilidades o en el estudio estadístico de los resultados aleatorios. Realmente esas obras se limitan a proponerle al lector la aplicación de una serie de sistemas de colocación de apuestas, martingalas y progresiones que generalmente están basadas en las «falacias del jugador», sin ofrecer una verdadera prueba matemática de su efectividad frente a la Banca, todo lo cual es adobado además con una serie de anécdotas, especulaciones, recomendaciones y observaciones basadas sólo en la experiencia personal del autor de cada obra. En verdad es muy difícil creer que esas obras tienen un auténtico carácter científico, debido a la gran cantidad de especulaciones y suposiciones que emplean en la fundamentación de los diversos temas que tratan.

¿Por qué los grandes genios matemáticos y científicos del siglo XIX no aprovechaban sus conocimientos para escribir obras especializadas y serias sobre los juegos de azar?

Quizá muchos matemáticos, contables, ingenieros y científicos de esa época, que habían sido consultados por los mismos empresarios administradores de los casinos que perfeccionaron los modernos juegos de azar para así garantizar las ganancias de la Banca, sabían que si los juegos de azar tienen un comportamiento aleatorio que estadísticamente es próximo al modelo de la Distribución Normal, entonces no vale la pena gastar las neuronas tratando de formular sistemas matemáticos de apuestas que supuestamente prometen obtener ganancias exorbitantes en los juegos de azar, cuando realmente en muy contados casos el jugador verá ocurrir una inusitada racha favorable que se desvié significativamente más allá del comportamiento promedio del juego, lo cual tiene una probabilidad de ocurrencia siempre muy baja.

Tal vez por eso tampoco resulta extraño que desde el siglo XIX muchos jugadores hayan terminado parapetados en la lectura de obras que hablan de milagrosos sistemas de apuestas que sólo se basan en las falacias, o que, en el peor de los casos, al intentar encontrar sistemas infalibles de apuestas que puedan vencer a la Banca, hayan terminado por revivir las viejas creencias místicas sobre la «Diosa Fortuna» (el uso de talismanes, patas de conejo, fe ciega en las corazonadas, etc.) que son propias de aquella remota época pagana y oscurantista en que aún en los juegos de azar no regía la ventaja matemática perfeccionada a favor de la Banca.

Bibliografía consultada:

HALD, Anders. A history of mathematical statistics from 1750 to 1930. John Wiley & Sons, New York, 1998.

KILBY, J. y FOX, J. Casino operations management. John Wiley & Sons, New York, 2005.

KOYRE, Alexandre. Estudio de historia del pensamiento científico. Editorial Siglo XXI, Ciudad de México, 1978.

STIGLER, Stephen. The history of statistics: the measurement of uncertainty before 1900.Belknap Press/Harvard University Press, 1990.

WIKIPEDIA. Consulta de los términos: Expected Value; Gambler’s Fallacy; Gambling; History of Statistics; House Edge; Wagering Business.

Fuente: http://www.eyeintheskygroup.com, 2014.

———————–
Más información relacionada:
Juego Seguro on line en España
La industria de las apuestas continúa su escalada